Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions
نویسندگان
چکیده
Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.
منابع مشابه
Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination
Postnatal growth and regeneration of skeletal muscle requires a population of resident myogenic precursors named satellite cells. The transcription factor Pax7 is critical for satellite cell biogenesis and survival and has been also implicated in satellite cell self-renewal; however, the underlying molecular mechanisms remain unclear. Previously, we showed that Pax7 overexpression in adult prim...
متن کاملMyogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene
The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet ...
متن کاملRNA-Seq analysis of isolated satellite cells in Prmt5 deficient mice
Satellite cells (SCs) represent a distinct population of stem cells, essential for maintenance, growth and regeneration of adult skeletal muscle. SCs are mononuclear and are located between the basal lamina and the plasma membrane of myofibers. They are typically characterized by presence of the transcription factor paired-box 7 (PAX7) that is widely used as a satellite cell marker. Under norma...
متن کاملThe emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development
Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dyst...
متن کاملCell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in different...
متن کامل